Conservation Effects Assessment Project (CEAP) at the St. Joseph River Watershed, Northeast Indiana

So Why Was the St. Joseph River Selected?

- Report in the late 1990's stated that Ft.
 Wayne had the 2nd highest levels of Atrazine in drinking water in the US
 - Also high levels of NO₃-N in Defiance, Ohio's drinking water
 - Nutrients and sediment into Lake Erie

SP in Surface Runoff:Total Discharge Ratio by Management

From field scale data, roughly 50% of SP and TP leaves a field through subsurface tile

NSERL Real-Time Data Access Website

Statements and Disclaimers

🥙 start

USDA-ARS N..

Contact Information

cultural

arch

ice

Modeling of Buffers on TP Loads

Modeling indicates ~8% decrease in TP Loading from buffer strips

Courtesy Gary Heathman

Modeling of Buffers on TP Loads

Modeling also suggests if all fields were buffered, could achieve ~50% decrease in TP Loading

Courtesy Gary Heathman

Influence of Drainage Class on Nutrient Losses

- Nutrient losses were higher from watersheds with more:
 - Direct Drainage
 - Pot-Hole Drainage

Traditional Tile Risers

Subsurface Tile & Tile Riser Flow

In our landscape, the hydrology has been short circuited. Dating back to the mid-1800's, settlers had to drain the land to break the sod.

Pot-hole is 1.85 miles from ditch (nearest point)

Percent Reductions in Sediment and Nutrient Loads: blind inlet vs tile risers

<u>Nutrient</u>	% Reduction
Sediment	79
Ammonium-N	59
Nitrate-N	24
Total Kjehldahl N	48
Soluble P	72

Total P

78

Watershed Scale Testing of Blind Inlets

- ★ Continued detailed monitoring of instrumented potholes
- → Blanketed a monitored small watershed (~300 ha) with blind inlets

Cedar Creek 20 species from 3096 captures

79% headwater fishes

Relative Abundance (%)

Upper Big Walnut Creek
25 species from 7234
captures

95% Headwater fishes

Conclusions

- 10 yrs of WQ monitoring
- Tested conservation practices (buffers, tillage, cropping systems) through modeling and monitoring
- Identified key flow-paths and developed CP's to address one of these (tile risers)
- Partnering NASA et al. to test remote sensing technologies

Conclusions

- Assessing in-stream habitat and fish species/abundance
- Developing partnerships to assess the potential for instream treatments to remove nutrients
- Working with partner groups to assess in-field nutrient management

